A Radio Transceiver From A Cable Modem Chipset
Download File --->>> https://cinurl.com/2t8s2c
The RTL SDR is not the only such example though, for there is an entire class of cable modem chipsets that contain the essential SDR building blocks. The Hermes-Lite is an HF amateur radio transceiver project that uses an AD9866 cable modem chip as the signal end for its 12-bit SDR transceiver hardware with an FPGA between it and an Ethernet interface. It covers frequencies from 0 to 38.4 MHz, has 384 kHz of bandwidth, and can muster up 5W of output power.
I wish.Every time I looked in to it datasheets and even baseband interface standards like digirf 2.0 ware non-existent.And all the baseband stuff or most cable modem chips have no public documentation :(
Subscribers can access their cable modem service by simply turning on their computers, without dialing-up an ISP. You can still watch cable TV while using it. Transmission speeds vary depending on the type of cable modem, cable network, and traffic load. Speeds are comparable to DSL.
BPL is the delivery of broadband over the existing low- and medium-voltage electric power distribution network. BPL speeds are comparable to DSL and cable modem speeds. BPL can be provided to homes using existing electrical connections and outlets. BPL is an emerging technology that is available in very limited areas. It has significant potential because power lines are installed virtually everywhere, alleviating the need to build new broadband facilities for every customer.
CARLSBAD, Calif.--(BUSINESS WIRE)--MaxLinear, Inc. (NYSE: MXL), a leading provider of radio frequency (RF), analog and mixed-signal integrated circuits for the connected home, wired and wireless infrastructure, and industrial and multimarket applications, today announced that Aviat Networks (NASDAQ: AVNW) has selected the MxL1105 CMOS transceiver along with the MxL85652 and MxL85110 modems for its new line of WTM 4800 Multi-Band radios.
The MxL1105 is a single-chip broadband microwave transceiver that supports all licensed and unlicensed bands from 5GHz to 44GHz, including channel spacing options from 5MHz to 112MHz. With built-in Full Spectrum Capture® (FSC®) technology, the device supports channel aggregation mode which enables a second channel of any channel spacing to be processed within the same IC. The MxL1105 incorporates a full receive, transmit, feedback path, and all synthesizer components on a single chip, and can support code rates up to 4096 QAM. The closed-loop digital pre-distortion provides power amplifier (PA) linearization for a wide variety of PAs.
For all other microwave radio bands, designers can select chipsets to realize all of the licensed microwave radio bands from 6 to 42 GHz. Hittite has a large selection of components available for microwave radio applications. The IF transmitter and receiver chips HMC7436LP5ME and HMC7362LP6JE support all of the standard microwave frequency bands from 6 to 42 GHz.
Hittite Microwave continues to provide innovative, high performance, Antenna-to-Bits microwave radio solutions covering all bands from 6 to 42 GHz, while supporting both split-mount and full ODU style microwave radios. The IF transmitter and IF receiver chips HMC7436LP5ME and HMC7362LP6JE provide a very high level of integration, support all of the standard microwave frequency bands from 6 to 42 GHz, and form the core of these compact, high performance microwave radio chipsets.Hittite Microwave and Xilinx have successfully demonstrated a complete modem with 1024-QAM modulation in a 30 MHz channel over an 18 GHz microwave link. The BER of the complete modem was better than 10-9 over a wide range of attenuation settings. The IF transmitter and IF receiver chips are also capable of supporting modulations of 2048 and 4096-QAM.Hittite Microwave Corp.,Chelmsford, MA,txrx@hittite.com,www.hittite.com
A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably. Modems can be used with almost any means of transmitting analog signals, from light-emitting diodes to radio.
Early modems were devices that used audible sounds suitable for transmission over traditional telephone systems and leased lines. These generally operated at 110 or 300 bits per second (bit/s), and the connection between devices was normally manual, using an attached telephone handset. By the 1970s, higher speeds of 1,200 and 2,400 bit/s for asynchronous dial connections, 4,800 bit/s for synchronous leased line connections and 35 kbit/s for synchronous conditioned leased lines were available. By the 1980s, less expensive 1,200 and 2,400 bit/s dialup modems were being released, and modems working on radio and other systems were available. As device sophistication grew rapidly in the late 1990s, telephone-based modems quickly exhausted the available bandwidth, reaching 56 kbit/s.
The rise of public use of the internet during the late 1990s led to demands for much higher performance, leading to the move away from audio-based systems to entirely new encodings on cable television lines and short-range signals in subcarriers on telephone lines. The move to cellular telephones, especially in the late 1990s and the emergence of smartphones in the 2000s led to the development of ever-faster radio-based systems. Today, modems are ubiquitous and largely invisible, included in almost every mobile computing device in one form or another, and generally capable of speeds on the order of tens or hundreds of megabytes per second.
Later developments would produce modems that operated over cable television lines, power lines, and various radio technologies, as well as modems that achieved much higher speeds over telephone lines.
A significant advance in modems was the Hayes Smartmodem, introduced in 1981. The Smartmodem was an otherwise standard 103A 300 bit/s direct-connect modem, but it introduced a command language which allowed the computer to make control requests, such as commands to dial or answer calls, over the same RS-232 interface used for the data connection.[14] The command set used by this device became a de facto standard, the Hayes command set, which was integrated into devices from many other manufacturers.
The introduction of microcomputer systems with internal expansion slots made small internal modems practical. This led to a series of popular modems for the S-100 bus and Apple II computers th